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Sea level variations induced by heating and cooling:
An evaluation of the Boussinesq approximation in ocean models
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Abstract. In this paper a sigma coordinate ocean model is modified to remove the commonly
used Boussinesq approximation so that the effect of thermal expansion is exactly included in the
basic equations in order to cope with the seasonal heating cycle and the detection of climate
change through variation in sea level height. Tests are performed to evaluate the differences be-
tween Boussinesq and non-Boussinesq calculations under different heating and cooling condi-
tions and different model domains. For an idealized case of a flat bottom, shallow ocean basin
without wind forcing, simulations of a warm eddy show that the non-Boussinesq dynamics have
only a minor effect on the baroclinic current field. However, vertically averaged velocities,
though small compared with the baroclinic velocities, are cyclonic for the Boussinesq calcula-
tion and anticyclonic for the non-Boussinesq calculation. The results indicate that global or
closed basin Boussinesq models should be able to simulate most of the observed steric sea level
changes on seasonal or climate timescales, when corrected by a spatially uniform, time-depen-
dent factor calculated from the volume-averaged density change. The seasonal variation of the
globally averaged sea level calculated from climatological data is small, about 1 cm. Variations
in steric sea level in regional models, both Boussinesq and non-Boussinesq, may differ from
those of global models owing to the unknown transport across their boundaries associated with
the local heating and cooling. A spatially uniform, time-dependent correction, similar to that as-
sociated with thermal expansion, is proposed to account for transport across open boundaries of
regional models. Variations of sea level obtained from a Boussinesq model of the Atlantic Ocean
approximate the seasonal signal due to the heating/cooling cycle of each hemisphere as observed

by satellite altimeter data.

1. Introduction

Variations of density p in the world oceans are relatively
small, usually less than * 2.5% of the average density p,
Therefore a common assumption in ocean dynamics, known as
the Boussinesq approximation, is to ignore variations in density
where p appears as a coefficient but to take into account
variations in p in the gravitational buoyancy force. This approxi-
mation is valid when the vertical scale of motion is small com-
pared with the vertical scales of variations in density (see, for ex-
ample, Veronis [1973, chapter 4], Gill [1982, chapter 6], and
Greatbatch [1994] for more discussion of this approximation).
The Boussinesq approximation is therefore a common assump-
tion in ocean models, e.g., the Bryan-Cox model [ Bryan, 1969;
Cox, 1984], the Semi-spectral Primitive Equation Model (SPEM)
[Haidvogel et al ., 1991], and the Princeton Ocean Model (POM)
[Blumberg and Mellor, 1987; Mellor, 1992]. This approximation,
when applied to ocean models, implies that the seawater is in-
compressible so that volume rather than mass is conserved. Thus,
for example, a motionless ocean which is uniformly heated at the
surface will not experience sea level change. Recently,
Greatbatch [1994] has raised concern that since variations in sea
level associated with expansion or contraction of the water col-
umn due to density changes are missing from ocean models, they
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may not correctly simulate seasonal [ Partullo et al., 1955] and
climatic [ Church et al ., 1991] changes in sea level. For example,
seasonal variations in sea level are observed in the global ocean
with tide gauges [e.g., Tsimplis and Woodworth, 1994] and satel -
lite altimeters [ Stammer and Wunsch, 1994] but may differ from
ocean model simulations. Ocean models can simulate steric sea
level changes associated with climatic changes in thermohaline
structure as recently demonstrated by Ezer et al. [1995]. Coastal
ocean models can also forecast variations in sea level; for exam-
ple, an experimental, operational, coastal nowcast/forecast system
for the U.S. east coast [Aikman et al., 1995] shows considerable
skill in the prediction of short-term, wind-driven, sea level varia-
tions. However, the processes associated with long-term, sea-
sonal, and interannual variations due to heating and cooling need
further understanding before they can be accurately predicted by
ocean models.

Consider a closed basin. It is supposed that the non-
Boussinesq sea level can be written as

n(x,y,1) = ﬂg(x,y,f)+775(f)+TIGs(x,y,t) ¢))

where 1), is the local sea level change due to'the Boussinesq
dynamics, 7.(¢) is due to expansion or compression of the water
column and is equal to the area average of -H{p/p, , where
H(x, y) is the bottom topography and 8p(x, y, t) is the vertical
average of the density deviation from a reference density p, Inan
application of (1), 75 is unknown and neglected as a small
error; it is, however, largely attributable to the so-called
“Goldsbrough-Stommel gyres” [ Greatbatch, 1994], a non-
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Boussinesq vortex stretching effect due to density change. The
Goldsbrough-Stommel gyre, first introduced for the case of
forcing by mass flux due to evaporation and precipitation, is
discussed also by Huang and Schmitt [1993].

The hypothesis embodied in (1) is that 17 is independent of the
spatial variables, x and y. For (1) to be useful, 74 should be
small so that, for example, Boussinesq global models when
compared with observations may be adjusted by a globally uni-
form, time-dependent 7:(?). In other words, the local elevation
change induced purely by density change in the continuity equa-
tion is rapidly distributed over the entire domain with a timescale
Llc, where L is the basin lateral scale and ¢ = (gH)'"? is the
barotropic wave speed. In the most simplified case of a motion-
less ocean with a uniform heating, 1= 1z The main objective of

this paper is to test a non-Boussinesq model and to compare it

with its Boussinesq counterpart.

It should be mentioned that here the term “non-Boussinesq”
does not refer to the full non-Boussinesq dynamics, which might
also include acoustic waves [ Veronis, 1973]. In the equation of
state used here [Mellor, 1991] the density is calculated from the
salinity, potential temperature, and pressure, p = p(S,T, p), but
the pressure is calculated from the hydrostatic relation using an
approximate, temporally constant density. Therefore sound waves
are filtered out in both the Boussinesq and the non-Boussinesq
models.

In this paper, relatively idealistic, numerical model experi -
ments are performed (i.e., a flat bottom ocean without wind
forcing) in order to clearly understand the difference between
Boussinesq and non-Boussinesq models. An additional objective
is to study the application of the Boussinesq approximation to
regional models and to evaluate means of correcting Boussinesq
models for non-Boussinesq effects.

The paper is organized as follows: sections 2 and 3 describe
the non-Boussinesq model equations and their numerical imple-
mentation into the Princeton model. In section 4 the model is
tested for simple cases of heated or cooled pools of water, and in
section 5 we discuss an Atlantic Ocean simulation. An estimate
of the global averaged, seasonal sea level change is presented in
section 6. Equation (1) is reexamined in section 7 and extended to
include regional models with open boundaries. Section 8 provides
a summary of the study.

Two appendices are included in this paper. The first derives
the appropriate equations of motion for variable density models.
The second appendix analyzes the Boussinesq and non-
Boussinesq, linear responses to buoyancy forcing.

2. The Governing Equations

The turbulence Reynolds equations of motion for a compress -
ible fluid are presented in appendix A; terms in the governing
equations are subjected to scale analysis wherein turbulent fluc-
tuations are assumed small relative to variations in (ensemble)
mean properties. In addition, we invoke the boundary layer ap-
proximation which includes the hydrostatic approximation. The
analysis justifies the fact that turbulent fluctuations in density
may be ignored, leaving only the need to account for mean den-
sity variations. In appendix A, overbars are used to denote
Reynolds averages (elsewhere in this paper, overbars will repre-
sent vertical averages); here we eliminate the overbars except on
the vertical turbulence flux terms. Thus the approximate continu-

ity, heat, momentum, and hydrostatic equations for density p;

potential temperature T; velocities ,v,w; and pressure p can be
written,
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R is the penetrative radiation flux and C, is the specific heat.
Treatment of the salinity equation is identical to (3); the radiation
term is, however, absent and is therefore omitted. Lateral diffu-
sion is represented by Frand F, , An equation of state based on
the UNESCO formula [ Mellor, 1991] relating density to potential
temperature, salinity, and pressure completes the equation set. To
invoke the Boussinesq approximation set, p = constant = p,
everywhere in the above equations except in (5).

It should be noted at the outset that the more important conse -
quence of density variability, aside from that in (5), resides in the
first terms in (2) and (3). Density variations appearing in the co-
efficients of velocity are a lesser effect in the ocean; they would,
of course, be more important if the model equations were applied
to the atmosphere.

Anticipating a need in the next section, we now transform the
equations to depth-scaled, sigma coordinates so that r* =1,
xX¥=1x, y* =y,

Z*=n(xy,t)+ oD, y,t)
D (xy,t)= Hxy)+1(x y, 1)
where H(x, y) is the bottom topography, and
o (x*,y*,2%,1*%) = ¢(x,y,0,1) M

where ¢ is any dependent variable. It therefore follows that

o % l(ﬁwée)%

(6a)
(6b)

=——— —, O=X,Y,t ®)

oo da D\ Jda do. ) do
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After insertion of (7), (8), and (9) into (2), (3), and (4) we obtain
the transformed sigma coordinate version
dpD I d )
——+—\pDu)+—\(pDv)+—(pw)=0 (10)
—+— (D) ay( )+—(pw)
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and we define a new “vertical” velocity (actually, the volume .

flux normal to sigma surfaces) according to

( oD an) ( oD an)
O=w—u o—+— |-| O— +—
ox ox ot ot

w(x,y,0,t) = o(x,y,-H,t) =0 (13b)

More details about the formulation of sigma coordinate models
and the numerical implementation are given by Blumberg and
Mellor:[1987] and Mellor [1992].

3. Model Implementation

The numerical model is the Princeton ocean model which is a
sigma coordinate, free surface, primitive equation model with an
imbedded turbulence closure scheme [Blumberg and Mellor,
1987; Mellor, 1992] and which heretofore used the Boussinesq
approximation whereby density is held constant except in the
hydrostatic equation (5).

It is fairly obvious from an examination of (10), (11) and (12)
that the process of converting our Boussinesq model to a non-
Boussinesq model is greatly simplified by defining new density-
weighted velocities, ( #,v,w) = ( pu,pv,pw) a partial adoption of
a suggestion by R. J. Greatbatch and Y. Lu (unpublished
manuscript, 1994). Much of the coding is therefore unchanged.
The principal problem is the need to cope with the tendency
terms dpD/dt and ApDT /3t so that properties are conserved.
We use a leapfrog time step, and so it is necessary to extrapolate
p for the forward time step, then determine D from (10) and T
and S from (11) at the forward time step. Finally, the density is
corrected using the equation of state. The code has a switch so
that it can execute either the Boussinesq algorithm, where p= p,
in (10) to (12), or the non-Boussinesq algorithm.

4. Experiments With Idealized
Heating and Cooling

4.1. A Heated Pool of Water

To gain experience with the new model, we compare
Boussinesq and non-Boussinesq runs for the same problem. The
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model basin is a square of 1000 x 1000 km with grid sizes Ax=
4y =50km and 4c = 0.05, for a total of 21 sigma layers. The
bottom is flat and has a depth of 200 m (extrapolation of the re-
sults to a deeper basin will be discussed later). The sigma layers
are therefore the same as z levels. The Coriolis parameter f =
constant = 107451, o

To damp out both internal and inertial waves, the horizontal
viscosity and diffusivity is, for this horizontal resolution, at the
fairly high value of 2000 m? s, The model’s turbulence closure
scheme is turned off for this study and the vertical viscosity and
diffusivity decrease linearly from the value 102 m? s~! at the
surface to zero at the depth of 100 m.

In this application the density is a direct prognostic variable;
that is, use (11) and set p=p, +3Jp=1000kgm3 + T.
The initial condition is a homogeneous fluid with a density of
P, and zero velocities. For the first 5 days of the run the density
is de creased via the radiational sink term on the right side of
(11) and is therefore equivalent to heating. Horizontally, the input
of negative density has a Gaussian distribution, exp{-[(x - x )% +
(v - ¥0)21 / (200 km)?2}, about the center of the domain, (x,. y,.
Vertically, the input is uniform in the upper 100 m of water
whereas the lower 100 m is not affected.

According to (10) and (13b), together with zero normal veloc -
ities on the lateral boundaries, the integrals, [[| DdAdo and
/[l pDdAdo are conserved in the Boussinesq case and non -
Boussinesq case, respectively. After the sink term has been re-
moved at day 5, [[[DSpdAdo and [[[pDdpdAdc are
conserved in the Boussinesq case and non-Boussinesq case,
respectively, in accordance with (11) and (13b). These quantities
are also conserved appropriately by the numerical models.

After the fifth day when the sink term is shut off, the volume
or mass-averaged density has decreased by 0.074 kg m 3 relative
to the initial 1000 kg m 3. For the Boussinesq case the area aver-
age of D or 7 is conserved so that the area average of 7 is zero.
For the non-Boussinesq case the area average of dp D is con-
served; this means that

Sp 0.074
N = —H{ — ) = 200m—— = 0.0148m
P, 1000

where the angle brackets denote an area average.

Figure 1 shows the surface elevation after 20 and 40 days for
the Boussinesq and the non-Boussinesq cases. The decay of the
warm eddy with time due to diffusion is evident in both cases.
Note that in the Boussinesq case the increase in surface elevation
at the center is balanced by the decrease in elevation elsewhere
(elevation is negative outside the dashed contour in Figures 1a
and 1c¢), so the area-averaged elevation is zero.

Figure 2 shows a cross section at the center of the domain for
the Boussinesq (dashed line) and the non-Boussinesq (solid line)
cases; also shown is the Boussinesq case (dotted line) where a
uniform correction of 7z = 1.48 cm has been added. This correc -
tion brings the sea level closer to the non-Boussinesq case (the
maximum error is reduced from 1.8 to 0.3 cm) but differs from
the non-Boussinesq case due to the missing Goldsbrough and
Stommel gyre 7). (Greatbatch [1994] defines this as a solution
where nonlinearity and friction are neglected, whereas here they
are included). It should be mentioned that experiments (shown
later) with upper ocean cooling instead of heating produced a
very similar effect; one merely needs to turn Figure 2 upside
down. Figure 3 shows midbasin transects of the density anomaly
P (xyz) for the non-Boussinesq case for days 20 and 40.
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Figure 1. Surface elevation calculated by the (a) Boussinesq and by the (b) non-Boussinesq models after 20 days
and the (c) Boussinesq and (d) non-Boussinesq models after 40 days, where the upper ocean warmed up during
the first 5 days. The contour interval is 1 cm; dashed lines represent zero and negative contours, and the first

contour in Figures 1b and 1d has a value of 1 cm.

Differences in the anomalies between the Boussinesq and non -
Boussinesq models, associated with small changes in advec tion
as shown later, are about 3 orders of magnitude smaller than the
anomalies of either model. The decay of the eddy is again
evident.

Cross sections of the transverse (swirl), v component velocities
for the Boussinesq and non-Boussinesq cases for day 20 are
shown in Figure 4 (day 40 results are not shown; they are similar
in structure to those of day 20 but with smaller amplitudes). The v

velocity component shows an anticyclenic circulation developed
in the upper layers and a cyclonic circulation developed in the
lower layers. Note that the non-Boussinesq effect is predomi-
nantly barotropic (Figure 4c). The difference between the two
cases is quite small (the maximum Boussinesq error is about 0.3
cms™! compared with the maximum flow of about 8 cm s°1), and
as indicated later, the error is much smaller in a deeper, more re-
alistic basin.

We now look in more detail at the vertically averaged flow,
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Figure 2. Surface elevation cross section at the center of the do-
main after 40 days. Solid, dashed, and dotted lines are for the
Boussinesq, the non-Boussinesq, and the Boussinesq with uni-
form correction, respectively.

oh’

shown in the form of a stream function in Figure 5. While the
Boussinesq case shows a (vertically averaged) weak, cyclonic
circulation, the non-Boussinesq case shows a weak, anticyclonic
circulation with additional, boundary-induced, subgyre structure.
Note that the vertically averaged flow is smaller by about a factor
of 20 than the maximum baroclinic flow; the maximum vertically
averaged flows associated with Figures 5a and 5b are a cyclonic
0.34 cm s ! and a anticyclonic 0.21 cm s, respectively. In this
particular example the velocities in the upper and lower gyres
(Figures 4a and 4b) almost balance each other, thus the remaining
difference is of the same order as the non-Boussinesq,
Goldsbrough-Stommel gyre (Figure 4c), about 0.2 cm s~!. This
error is much smaller than other errors in numerical models and is
negligible compared with most wind-driven currents in the ocean.

To better understand this reversal in circulation, we examine
the vertically integrated vorticity balance equation (see Ezer and
Mellor [1994] for more detail on how the terms are calculated in
the model). Figure 6 shows that the tendency and the Coriolis
terms balance each other and both reduce in amplitude as the
eddy decays. The signs of the two terms are, however, opposite in
the non-Boussinesq case compared with the Boussinesq case. For
this flat bottom case without surface and bottom friction, the
leading terms in the vorticity equation are the relative vorticity
tendency and Coriolis terms,

| d (— d (— dpD
—|—=l|pvD)-—|\puD) |- f—,
at[ax( )5 )] or

plus the advection and diffusion terms. One can integrate the
above equation, and since it is easy to justify the approximations,
D= H and (pu, pv)=pfu, v),on the left side one obtains the
relative vorticity

o= v _du = f(—qé— + 77_71-) — [ (adv.+diff.terms)dt

The Boussinesq relative vorticity is
it

n .
== B dv.+diff. te;
g = f j(a v.+di rms)dt
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The difference in ® and wg and the reversal in the mean swirl is
due to the term 5;5/ p,» which subtracts from the vorticity
stretching effect due to 1/ H.

A more extensive analysis of the Boussinesq and non-
Boussinesq response to buoyancy forcing is included in appendix
B. The appendix is, in fact, analytical justification for the decom-
position of (1).

4.2. Adjacent Heated and Cooled Pools

In the previous experiment the most obvious correction needed
in a Boussinesq model is the area-averaged, elevation adjustment

(a)
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Figure 3. A cross section of p after (a) 20 days and (b) 40 days
for the non-Boussinesq calculation. The contour interval is 1 kg
m™3; §p =-2.0and S =-1.2kgm?> at the center of the eddy in
Figures 3a and 3b, respectively, whereas dp =0 in the outer and
deeper regions.
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Figure 4. A cross section of the v velocity component for (a) the
non-Boussinesq calculation, (b) the Boussinesq calculation, and
(c) the difference between the two cases after 20 days. Dashed
lines represent negative contours; the first dashed line next to a

solid line is the zero contour. The contour interval is 1 cm s™'in
Figures 4a and 4b and 0.1 cm s in Figurte 4c.
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Ne (Figure 2) due to the change in volume-averaged density.
However, in global (or closed basin) models, where one hemi-
sphere is warmed while the other one is cooled, the average den-
sity change might be small. To test a case where 1z =0, an ex-
periment is performed as follows: a 1000 x 2000 km flat bottom
(H =200 m), f-plane domain is used, where one half of the do-
main is cooled by the same amount as the other half is warmed
(the heating/cooling are in a circular area as before), so the vol-
ume-averaged density does not change. In Figure 7 the surface
elevation and the vertically averaged flow after 40 days is, in the
northern half of the domain, similar to the previous experiments,
but now there is a counterflow in the southern portion of the do-
main where density increases. The vertically averaged flow is
again reversed between the Boussinesq and the non-Boussinesq
cases as was the case with only one gyre. Note that the asymme-
try between the heated and the cooled regions is due to the differ-
ent dynamics of cold and warm eddies; for example, the cold
eddy stretches farther downward while the warm eddy stretches
farther outward with time. A comparison of surface elevation
cross sections from south to north in Figure 8a reveals a spatially
dependent, Boussinesq error 7)gg of about 1 cm or less. The re-
sults of this experiment differ from that of the single basin, single
gyre by virtue of the flow exchange between the northern and
southern portions of the basin.

In Figure 8b the non-Boussinesq, two-gyre experiment is also
compared with non-Boussinesq cases representing separate re-
gional.(subbasin) models of a warm eddy (section 4.1) and a cold
eddy. Now, let us pretend that the regional model is meant to
simulate the flow and elevation of either subbasin which is a part
of the whole basin. Since all models are non-Boussinesq, (1) of -
fers no corrections for the regional models, so the difference in
elevation between the regional subbasin models and the whole
basin model in Figure 8b is due to the cross-basin transport which
is missing from the regional models. An extension of (1) to ac-
count for cross-basin transport is obtained in section 7.

The experiments described here use a relatively shallow basin
(simulating a shallow lake or continental shelf) where the
Boussinesq effect is more pronounced. In experiments (not
shown) with the same heating/cooling structure but with a 2000 -
m instead of 200-m bottom depth, the maximum Boussinesq error
in surface elevation 7 after 40 days decreases from 0.3 to 0.03
cm. The latter is consistent with the fact that for a given heating
or cooling the Goldsbrough-Stommel elevation is proportional to
H'! as shown in appendix B.

5. The Atlantic Ocean

An example from a realistic Boussinesq model (with bottom
topography and surface wind and heat fluxes) of the Atlantic
Ocean is used to test if the seasonal cycle of sea level can be
simulated. The Princeton ocean model in the Atlantic configura-
tion has a horizontal resolution of about 20 to 100 km (with
higher resolution in the Gulf Stream and the Antarctic circumpo-
lar regions) and 16 sigma levels. The seasonal surface forcing is
derived from the monthly climatologies based on the
Comprehensive Ocean-Atmosphere Data Set (COADS) (see Ezer
and Mellor [1994] for more detail); the inflow/outflow of the
Antarctic Circumpolar Current (ACC) is prescribed and equal to
a temporally invariant, total transport of 135 Sv (1 Sv = 10°m?
s'1). The Levitus [1982] climatology has been used as an initial
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Figure 5. Vertically averaged stream function for the (a) Boussinesq and the (b) non-Boussinesq models after 20
days and the (c) Boussinesq and (d) non-Boussinesq models after 40 days. The contour interval of the stream
function is 10#m3s~!. Solid and dashed contours represent cyclonic and anticyclonic circulation, respectively.

condition. The mean surface elevation obtained from the last 5
years of a 10-year run is shown in Figure 9. About a 1-m drop of
sea level across the Gulf Stream and about a 1.6-m drop across
the ACC are quite realistic features of the model. Further discus-
sions and analyses of this model are left for other studies; here
only the seasonal sea level signal (during one of the simulated
}"ears) is discussed.

The area-averaged elevation over each hemisphere (between
66°N and 66°S) is compared with observations from the
TOPEX/POSEIDON altimeter in Figure 10a. The altimeter data

are based on a 2° x 2° analysis of each repeat cycle (in 10-day in-
tervals) calculated for. 1993 (see King et al. [1994] and Stammer
and Wunsch [1994] for more detail). The altimeter data are
noisier than the model, which does not resolve eddies in most of
the domain and is forced by smooth climatological surface data.
However, one can see a clear seasonal signal in the Boussinesq
model. The amplitude of this signal is comparable to that derived
from the altimeter data for the South Atlantic but is
underestimated for the North Atlantic region. The amplitude of
the difference between the hemispheres is larger for the observa-
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Figure 6. The leading terms in the vertically averaged vorticity balance equation (in units of 10712 ms2) across
the center of the domain for the (a) Boussinesq and the (b) non-Boussinesq models after 20 days and the (c)
Boussinesq and (d) non-Boussinesq models after 40 days. The solid, dashed, and dotted lines represent the ten-

dency, the Coriolis, and the advection and diffusion terms, respectively.

_tions than for the model. In addition to model and observation er-

ror, this could be due to inadequacy in the climatological forcing
~ or, less likely, interannual differences in surface heat flux. The
expected thermal expansion elevation change calculated from the
average density integrated over the North Atlantic (0 < latitude <
66°N), the South Atlantic (66°S < latitude < 0), and for the entire
model domain is shown in Figure 10b. The model results in
Figure 10a have been corrected for 7 (Figure 10b, dotted line).
However, this time-dependent uniform correction is small in this
case, since the northern and the southern hemispheres are
heated/cooled in opposite phases.

6. The Global Ocean

It is possible to evaluate the seasonal variations of 77 from the
Levitus [1982] analysis. Thus the result of calculating the global
area average of -H dp/p, is given in Figure 11. Also shown is an
annual and semiannual Fourier fit to the data. The fact that 7z #0
is, of course, due to the asymmetry between the northern and -
southern oceans; nevertheless, 7 is small, about 1 cm. Therefore
global Boussinesq' models should require very little correction.
The seasonal sea level variations for different oceanic basins have
been estimated also by Stammer and Wunsch [1994] using the

TOPEX/POSEIDON altimeter data.
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Figure 7. The surface elevation for the (a) Boussinesq and (b)
non-Boussinesq models and the vertically averaged stream func-
tion for the (c) Boussinesq and the (d) non-Boussinesq models
after 40 days, where the upper part of the domain is heated while
the lower part is cooled. The contour interval is 1 cm for Figures
7a and 7b and 10* m3s~! for Figures 7¢ and 7d.

7. Regional Models

In order to accommodate regional models, we review the basis
for (1), now allowing for open boundaries. The vertically aver-
aged continuity equation (2) may be written

apD
——+V-(pVD)=0
5tV (VD)=

where V is a horizontal divergence operator and overbars denote
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vertical averages. Now p=p, +$ to which we add
V=V,+8V. We consider n and V to be the “correct” el-
evation and vertically averaged velocity, whereas 1 and V are
derived from Boussinesq physics but, in addition, may be a
solution of a regional model which contains error due to the fact
that velocities on the boundaries of the regional domain may be
in error or, in fact, unknown. Here 6V is the difference between
the vertically averaged, correct flow and the Boussinesq, regional
flow. Thus

%(poD)+—g;($D)+V~(po V—;D)+V~($V_BD +/WD) =0
Now V-V, =dn,/d so that

ip )+V-(——5pv3 D+——p6V

o

d
at(ﬂ Mg+ DJ=0 14

Finally, for the long timescale (<< L, /+/gH ) associated with
heating and cooling cycles we make the jump from (14) to

o Po

n(x,y,0) = Ng(x,y,0) + N (8) + 17 (2) 5)
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SURF. EL. 40 DAYS

___1BASIN, NON-BOUSS.
6-——- 1 BASIN, BOUSS.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Y (km)

(b

SURF. EL. 40 DAYS

__1BASIN, NON-BOUSS.
6—--~ 2 SUB-BASINS, NON-BOUSS.

€
L
-t
o of
-2}
4+
_6- 4
-8 L : L s n L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Y (km)

Figure 8. (a) Surface elevation in a cross section at the center of
the Y dxis from south to north in Figures 7a and 7b. Solid and
dashed lines represent the Boussinesq and the non-Bouissinesq
cases, respectively. (b) Non-Boussinesq cases. Solid lines repre-
sent calculations for the full basin model and dashed lines, where
each gyre is separated from the other.
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Figure 9. Five-year mean elevation obtained by the Boussinesq version of the Princeton ocean model driven by
monthly climatological heat flux and wind stress. Contour interval is 10 cm; shaded areas and dashed contours

represent negative values.

where we have neglected 7 (x,y,#) and

op 1 —6_p
=(2Pp\=_11 Ppg 16
Ne D, A‘UA,D,, a (162)
Ny = é%§5i‘7_;’)iﬂ§_v_.npdsdt' (16b)

so that both nzand 1 are time dependent but are not dependent
on x and y. The divergence theorem is used to obtain (16b); the
inner integrand is the flow through a lateral area element Dds; n
is the unit vector normal to the area element. Generally, n;will be
unknown and will have to be determined from empirical in-
formation external to the regional model.

Note that (15) can be extended to purely non-Boussinesq mod -
els, since 7= 1y + 1. Therefore 1y can provide a spatially
independent, sea level correction to regional models as in Figure
8b.

8. Conclusions

The conventional governing equations of an ocean model have
been modified to remove the Boussinesq approximation so that

variations of steric sea level due to thermal expansion in pro-
cesses such as the seasonal heating cycle [Pattullo et al., 1955]
and global climate change [ Church et al., 1991] are accurately
included in the calculations. The numerical implementation par-
tially conserves the basic structure of the ocean model by replac-
ing the velocity component with velocity multiplied by density.
Experiments with different heating or cooling and different
model domains have been performed to evaluate the Boussinesq
approximation. The tests indicate that as suggested by Greatbatch
[1994], a globally uniform, time-dependent correction of sea level
can correct a Boussinesq solution so that it closely approximates
the corresponding non-Boussinesq solution. This conclusion re-
sults from the fact that a non-Boussinesq model is able to dynam-
ically adjust its surface elevation to spatially and temporally vari-
able heating and cooling within a timescale shorter than seasonal
or climatological timescales. The remaining error in the
Boussinesq dynamics is associated with the so-called
Goldsbrough-Stommel gyre due to vortex stretching effects as-
sociated with spatial heating patterns. An interesting result was
that the vertically averaged flow was reversed by the non-
Boussinesq dynamics in the idealized, flat bottom model and
without wind forcing. However, the differences in sea level and
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Figure 10. (a) The seasonal variations of the area-averaged sur -
face elevation of each hemisphere (66°S to 66°N) from the
Boussinesq model shown in Figure 9 (solid and dashed lines in -
dicate averages over the North and the South Atlantic, respec-
tively), and from the TOPEX/POSEIDON altimeter data (pluses
and circles indicate averages over the North and the South
Atlantic, respectively). (b) The area average of - H &/p, for the
model North Atlantic (solid line) and South Atlantic (dashed line)
and for the entire Atlantic Ocean (dotted line); the latter is 7).

velocity compared with the Boussinesq result are usually negli-
gibly small.

The net result for global models is that Boussinesq calculations
can be corrected by a spatially independent, time-dependent
function 7(?). The seasonal variation of this function is small,
about 1 cm.

In the case of regional models an extension is needed, in th .
form of (15), to account for either Boussinesq or non-Boussinesq
transport through open boundaries of ocean models. Once again,
it is posited that Boussinesq calculations can be corrected by a
spatially independent, time-dependent function. For example, it
is clear that a spatially uniform 717,could correct the subbasin re-
sponse in Figure 8b. In the case of the Atlantic Ocean,
Boussinesq simulation, the calculated 7). (Figure 10b, dotted line)
was small. We leave it to the reader to visualize a 73z) correction
which would improve agreement between model area-averaged
sea level and the observations in Figure 10a.
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Figure 11 . The globally averaged, seasonal variation of ocean el-
evation due to density changes, 1 =- <HP/ps> calculated from
the Levitus [1982] monthly climatology. The dashed curve is an
annual and semiannual, Fourier fit to the data given by
np = 0.279 cosS(ot) +0.246sin(wr) - 0.169 cos(ZwS
+0.017sin(20r), where @ = 27/ (12 months).

Appendix A: The Reynolds Equations for a
Compressible Fluid

The basic fluid dynamic equations for a low Mach number
flow are

§+ak(puk)=0 (A1)
%L+ (pur)- = (A22)
a bCLp% (A2b)
%+a—i(pukui)+eijkpfjuk =—aii-+gz—’: (A3a) ‘
ey (A3b)
dx, Oox,

We now decompose the independent variables into a mean
(ensemble mean or time mean if the flow is stationary or spatial
mean if the flow is homogeneous) variable plus a turbulence de-
viation so that

u=i+u, p=p+p’, T=T+T', p=p+p’
Then, the usual Reynolds’ averaging yields
&/

——+i(ﬁﬁk +I)T,")=0

A4
o ox, S

-gt—(ﬁf+ﬁrf)+5§:(ﬁﬂkf+p’_u,’cf+ﬁﬁ+ﬂkﬁ)= 0 (A5)
2 (pm +P'_u,-’)+3i:(ﬁﬁu7i DU, + P +T, P
+£ijkfk(l_5’7k +l_7-'"_1i)=l78i ‘% (A6)

1
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We neglect the molecular fluxes, 7;;and g, although they are
important in the very near vicinity of fluid boundaries and in-
volve empirical, law-of-the-wall considerations which differ de-
pending on whether the surface is smooth or rough. We have also
neglected triple correlations in (A5) and (A6).

We now wish to evaluate the relative magnitude of the terms
in the above equations through scale analysis. Therefore

p~p,+0p (A7a)

(@, 7,w)~du (1,1, ¢,) (A7b)
T~ 6T (A7c)

p'~0p g (A7d)

(v W)~ bu g, (ATe)

~ 6T ¢, (AT
d/dt~1/8t (A7g)
d10x,013y~1/6x (ATh)
913z ~1/(g,0x) (ATi)

where the tilde symbol represents “order of”. The & represents
expected variations in mean properties. Now interpret the left
sides of (A7d-A7f) as rms values, and in the following discussion
we will assume that correlation coefficients are of order 1. Thus
w'T’ = 6ubT €2, etc., where g, will be assumed to be small. The
parameter &, defined in (A7b) and (A7i) and if assumed to be
small, will invoke the boundary layer approximation and the
hydrostatic approximation.

We focus on the continuity and temperature equation, since the
former is critical to the purpose of this paper which would largely
be defeated if the conservative nature of the latter were compro-
mised. All of the terms in (A4) and (AS5) are evaluated, and we
eliminate those which are obviously small; the remainder are

B I D
z +8_( )+5y‘(PV)
o)
"%/t& 65”(1+5p/p)
+ [pw+pw ] =0 (A3
oot
2 f(oote ol o )
N YRy p
3 + ax(puT)+ay(va)
5T(1+6p/po! 5M5T(1+5p/p)
ot
v 2w =2(-5T) @)
@ < S
oudl((y, 50/ Hopip Jer) L
5x£h[( ol p, Jei+{dp p)s] e,

and where we include the scaling evaluation in the second line
below each equation; all of these terms have been divided by p,
For nonstationary flow one must have &t~ 8x/6u. The
Boussinesq approximation is obtained if we let dp/p, — 0 so that
PP,

We next note that in order for the turbulent thermal flux term
w'T’ to be significant, then &, = &2. Therefore, if one wishes to
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retain terms of order §p/p,, one shoulu mclude the p w’ terms in
the above two equations. However, the group, pw+p'w’,
appears in (A8) and (A9) in identical form so that it is simply
possible to define a variable w, such that w= w+pw'lp ,and
proceed with the simplified equa tions. These are cited in the main

- text as (2) and (3) without circumflexes or overbars. Equations

(4) and (5) may be treated in similar fashion.

On the other hand, the same strategy could have been invoked
at the level of (A4), (AS5), and (A6). Thus one could define
it, =it, +p’u /p and then proceed to eliminate small terms.
However, (A8) and (A9) are still necessary to evaluate and
identify the leading terms and to eliminate small terms which
otherwise would increase the burden on the turbulence closure
problem.

Appendix B: Analysis of Boussinesq Versus
Non-Boussinesq Flows

The principal dynamical consequences of non-Boussinesq den -
sity effects may, for easier comprehension, be represented by lin-
ear equations which for a flat bottom and after integrating with
respect to z become

du an  d¢
L JCA/ s A Bl
o T T (Bl2)
av an  d¢
- tfi=—-g—--8—- (B1b)
0 dy oy
where ¢=H! fHJ;OWI p,dz’dz and
au L 1o 9 p
il _Z| %R B2
Yy THa at[po) ®2)

The overbars denote vertical averages. If we integrate (B2) over
an area bounded by a circuit on which the normal velocity com-
ponent is zero and then integrate with respect to time, we obtain

(2)-- <@>
H Po
where the brackets represent area averages. We have stipulated an
initial rest state where n= ép/p, =0.

Now differentiate (B1b) with respect to x, (Bla) with respect

to y, subtract the two results, use (B2) and obtain potential vor-
ticity conservation,

(B3)

9o _ .91 Ss_ﬁ _B

=5 f&t(H+p] B (Bda)
— v du
w=3x dy (B4b)

Next differentiate (B1a) with respect to x, (B1b) with respect to

¥, add the results, use (B2) again, and obtain

— | +fH® - BHiz — ¢’V ¢

o

(BS)
where ¢ =4/ gH . Next consider two regimes in parameter space
where f=0and f # 0.

B1. Steady Flow Cases Where [ = ¢
For B =0, (B4a ) can be integrated to give

(B6)
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and (B5) reduces to

o ot

[4

2 2 (55
cvin-2 0 Ha—z[ge)+fH5—czV2¢ ®7)

Consider a time when E-p/ p, has departed from zero but
thereafter is held constant, and transients have died out (the sys-
tem needs some dissipation for this).The Boussinesq equations,
emanating from (B2) for 8p/p, =0, are

iy Iy

=0 B8
ox dy (55e)

.= rle BSb
wpg=f H (B8b)
AV2inp - finy =V (B8c)

so that we can obtain nontrivial solutions, #g,vg,7np, for this
system forced by nontrivial ¢ (x, y). Note that <nz>=0.

Now set 1= 1np + 17, so that the remainder, non-Boussinesq
solution is

%‘x‘m ‘fyr =0 ®92)
7 - f( % +¢’:‘;:J (BOb)
CZVan _on __fZH_g_p_ (Bgc)

which is a system forced by f28_p/po. Note that
<n,>=-H<p/py>=n,. The remainder, 7y =
1,—<m,>, is attributable to the so-called Goldsbrough-
Stommel gyre which from (B9c) is of the order of
LX AIAH®Ip,, where L is the horizontal length scale of the
variation in §/p,. For the problem in Figures 1 to 4, Ngs 1S
smaller than 7], by only a factor of 5 or so; however, for a given
amount of buoyancy flux, H §/p,does not vary as H is varied so
that 75 ~ H™'. The result of the difference,

@ -0y =0, = fép/p,,is plotted in Figure 4c.

B2. Steady Flow Cases Where B # 0

Consider steady state again. The only solution is #=vV =0
and n=¢‘(¢')+n£-
Thus we obtain the well-known result that linearized, flat-bot-
tomed ocean models yield zero vertically averaged velocities in
the absence of wind stress curl.

B3. Another Flow Case Where  # 0

Greatbatch [1994] considered the case, -87)/ p, =0t, where Q
is independent of time. He assumes that ¢=du/dt=dv/dt =0
and odn/dt=0, but in view of its definition, ¢ =HQr/2,a
steady state solution does not seem possible.
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